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Self-interaction of a point charge in the Kerr space-time 

B LCautC and B Linet 
Equipe de Recherche Associee au CNRS No 533, UniversitC Paris VI, Institut Henri 
Poincare, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France 

Received 23 November 1981 

Abstract. We determine the electric and magnetic self-field of a point charge at rest on 
the symmetry axis of the Kerr space-time in the coordinate system in which the metric 
describes locally a constant, static and homogeneous gravitational field. The result differs 
from that of a uniformly accelerated point charge in Minkowski space-time because of 
the influence of global boundary conditions. It follows that we can determine the induced 
self-force on the point charge. 

1. Introduction 

DeWitt and Brehme (1960) have investigated the influence of a gravitational field on 
the equation of motion of a point charge considered as a test particle with respect to 
the gravitational field. They have shown that a force involving a non-local function 
of the metric and the past history of the point charge occurred in addition to the usual 
radiation-damping term of Dirac (1938) (this calculation has been improved by Hobbs 
(1968)). This force has been determined by DeWitt and DeWitt (1964) for a point 
charge falling non-relativistically in a static weak gravitational field. It is not connected 
with the emission of electromagnetic radiation and it will be non-zero even if the 
point charge is at rest. 

However, for a point charge at rest in a static space-time another approach enables 
us to determine the induced electrostatic self-force. One can directly calculate it by 
considering the global electrostatic potential determined as the solution of the Maxwell 
equations. This point of view has been adopted by Unruh (1976) for a point charge 
at rest within a spherical shell of matter, by Vilenkin (1979) for a point charge at a 
large distance from the horizon in the Schwarzschild space-time and by Smith and 
Will (1980) who calculated the self-force which would be measured by an instan- 
taneously co-moving, freely falling observer at the position of the point charge. For 
this last case, Frolov and Zel’nikov (1981) have given the expression for the self-energy. 

Recently, we have considered the same problem (LCautt and Linet 1981) in the 
coordinate system in which the Schwarzschild metric describes locally, in a small 
neighbourhood of the point charge, a constant, static and homogeneous gravitational 
field. This field is equivalent to an accelerated coordinate system in Minkowski 
space-time in the sense that the form of the Maxwell equations is the same in both 
cases. We have discussed the possible significance of the principle of equivalence 
taking into account the existence of this self-force due to the boundary conditions at 
infinity in the global space-time. 

The purpose of this paper is to extend the results given above to the case of a 
stationary axisymmetric space-time, more exactly, the Kerr black hole. This is made 
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possible because LCautC (1977) has determined, in algebraic form, the electromagnetic 
vector potential of a point charge at rest on the symmetry axis. In the coordinate 
system in which the Kerr metric describes locally a constant, static and homogeneous 
gravitational field, we shall deduce the expressions of the electromagnetic potential 
in a small neighbourhood of the position of the point charge. Then we shall see that 
we can define a finite electromagnetic self-field, at the position of the point charge, 
in a consistent way. Then we shall give the exact expression of the self-force on the 
point charge at rest on the symmetry axis of the Kerr space-time. We note that in 
the linearised Kerr metric, Beig (1973) has given the self-force within the framework 
of the DeWitt and Brehme formalism. 

2. Accelerated observer in the Kerr space-time 

The Kerr space-time is characterised by two parameters: M the mass and a the 
angular momentum per unit mass with a sit4 in order to get a black hole. In the 
Boyer and Lindquist (1967) coordinates the Kerr metric is 

4aMr sin2 6 
I: 

dt dcp d s 2 = ( l - T )  d t2 - id r2 - I :de2+  I: 

sin2 6)  dcp2 

with A = r2 - 2Mr + a’ and H = r2 + a 2  cos2 6. We have chosen units in which c = 1 
and G = 1. We shall study electromagnetism only outside the outer horizon r+ = 

We consider an observer moving along the world line ( c )  defined by r = r o  with 
ro > r+ and 6 = 0 in the Kerr metric (1). The orthonormal tetrad carried by the observer 
is chosen to be the locally non-rotating frame (LNRF) introduced by Bardeen et a1 
(1972). It is easy to prove that in this way, we define at the position r = ro and 6 = 0 
an accelerated non-rotating observer (Misner et a1 1973). 

The coordinate system (t, r, 6, c p )  is not adapted for describing the Kerr metric on 
the symmetry axis. Therefore we introduce Cartesian-like coordinates (xo, xi)  by the 
usual transformation 

M + (M2 - U2)1’2. 

x1 = r sin 6 cos Q 
0 x = t  

x2 = r sin 8 sin Q 
3 x =rcos  6 

in which the Kerr metric would be written in a well defined manner at the position 
x1 = 0, x2 = 0 and x3 = ro corresponding to r = ro and 6 = 0. The components of the 
LNRF tetrad along the world line (c) in the coordinate system (2) will be 

ea : (HA/’ A;’/’, 0, 0, 0) 
(0) 

2 2  with A. = r i  - 2Mr0 + a’ and I:o = ro + a . 
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The vector e ,  coincides with the unit tangent vector of the world line (c). The 
(0) 

acceleration vector of the observer is given by the formula (Misner et a1 1973) 

aa  = e p V p  e a  
(0) (0) 

The coordinate system ( y o ,  y i )  for which the metric (1) takes the form 

ds2= (1 + 2 g ~ ’ ) ( d y ~ ) ~ - ( d y ’ ) ~ - ( d y ~ ) ~ - ( d y ~ ) ~  ( 5 )  

up to the second-order corrections in the coordinates y i  in a small neighbourhood of 
the line (c), can be related to ( x o ,  x i )  by the general transformation 

(6)  

where y o  is the parameter of the world line (c ) .  The subscript ( c )  indicates the 
evaluation on the curve ( c ) .  Calculations, which we shall not reproduce here, lead to 
the following expressions for the transformation (6) :  

x s  = x s ( y o ) + e s  yi-$EA/(c)  e y  eA yiy’ 
( i )  ( i )  (1 )  

1/2  0 x0=);A”AG y 
x 1 = ro I;;’/’ y 2 + a 2  A A / ~  x ; ~  y 1 y 2  

x2=rox:01’2y3+a2AA/2x;2 y 1 y 3  

x 3 =  ro+AA/’ X;1’2 y1++M(r: - a 2 )  2,2(y1)2-Mri &2[(y2 )2+(y3)2] .  

3. Electromagnetic potential for the accelerated observer 

The Maxwell equations have the general form 

VoF’@ = 4 r J ”  and F~~ = >,Av - aA, 

(7) 

where As is the electromagnetic potential and J @  is the current density. We choose 
electrostatic units. In a Kerr black hole, L6aut6 (1977) has derived in algebraic form 
the components of the electromagnetic vector potential A, and A, of a point charge 
q at r = ro with ro > r+ on the symmetry axis. We have the following expressions 

I ( r  - M )  - (ro - M )  cos 8 
R +a2(r - ro cos e )  

I-. ( r  - M )  - (ro - M )  cos e 
R +a2(r - ro cos e )  

+(r - ro cos 6) I ( r  - M )  - (ro - M )  cos 0 
R -M(I -COS e) (9) 
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with 

R'= ( r - M ) 2 + ( r o - M ) 2 - 2 ( r - M ) ( r o - M )  cos e-(M2-u2)sin2 e. 
Now we must transform (9) into the coordinate system ( y o ,  y i )  introduced by the 

formulae (6) and (2). Omitting terms of order (y')' in the calculations, from (9) we 
deduce 

where E = [ ( ~ ~ ) ~ + ( y ~ ) ~ +  ( Y ~ ) ~ ] ~ ' ~ .  We can leave the constant quantities A$') undeter- 
mined as they will not be needed in the following discussion, 

Using a standard procedure we can define at the position of the point charge an 
electric self-field and a magnetic self-field in the coordinate system ( y o ,  y ' ) .  We 
introduce the usual polar angles SZ = ((U, p )  related to y and we set 

Elelr = lim - Foidf l  
E0+047T E = c o  

Bfelr = lim -- J 4kdSZ i, j ,  k circular permutation. 
EO'O 47T E = E O  

The only term in the expressions (10) giving an infinite field in the formulae (11) is 
the first term in the electrostatic potential Ao. We recall that this term corresponds 
to the electromagnetic potential of a point charge which is uniformly accelerated in 
the Minkowski space-time (Rohrlich 1963). The terms in (10) including the quantities 
A',"' do not contribute to the self-field. Finally the last terms in (10) give the following 
finite self-field: 

4. Concluding remarks 

The results presented in this paper extend our previous work (LCaut6 and Linet 1981) 
to the case of the Kerr black hole. Compared with the case of the Schwarzschild 
black hole, there is now also a magnetic self-field besides the electric self-field. In 
order to calculate them we have used the global solution of the Maxwell equations. 
The electromagnetic self-field (121, induced specifically by the gravitational field, 
results from the influence of global boundary conditions. 

Only the electric self-field exerts a self-force on the point charge at rest on the 
symmetry axis. Moreover we have not to consider the infinite force arising from the 
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first term in (10) because it can be absorbed in the mass renormalisation as in a 
Minkowski space-time. From (12) we find, always in the coordinate system (yo, y ' ) ,  

In the linearised Kerr metric, which is the Lense-Thirring metric, we note that (13) 
reduces to the Schwarzschild value. 

Furthermore if the point charge has a magnetic dipole moment, then the magnetic 
self-field produces a self-torque as suggested by Parker (1981) for a point charge in 
free fall. 
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